4 research outputs found

    Exploring Fully Offloaded GPU Stream-Aware Message Passing

    Full text link
    Modern heterogeneous supercomputing systems are comprised of CPUs, GPUs, and high-speed network interconnects. Communication libraries supporting efficient data transfers involving memory buffers from the GPU memory typically require the CPU to orchestrate the data transfer operations. A new offload-friendly communication strategy, stream-triggered (ST) communication, was explored to allow offloading the synchronization and data movement operations from the CPU to the GPU. A Message Passing Interface (MPI) one-sided active target synchronization based implementation was used as an exemplar to illustrate the proposed strategy. A latency-sensitive nearest neighbor microbenchmark was used to explore the various performance aspects of the implementation. The offloaded implementation shows significant on-node performance advantages over standard MPI active RMA (36%) and point-to-point (61%) communication. The current multi-node improvement is less (23% faster than standard active RMA but 11% slower than point-to-point), but plans are in progress to purse further improvements.Comment: 12 pages, 17 figure

    Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters

    No full text
    The increasing demand for computational cycles is being met by the use of multi-core processors. Having large number of cores per node necessitates multi-core aware designs to extract the best performance. The Message Passing Interface (MPI) is the dominant parallel programming model on modern high performance computing clusters. The MPI collective operations take a significant portion of the communication time for an application. The existing optimizations for collectives exploit shared memory for intranode communication to improve performance. However, it still would not scale well as the number of cores per node increase. In this work, we propose a novel and scalable multileader-based hierarchical Allgather design. This design allows better cache sharing for Non-Uniform Memory Access (NUMA) machines and makes better use of the network speed available with high performance interconnects such as InfiniBand. The new multi-leader-based scheme achieves a performance improvement of up to 58 % for small messages and 70 % for medium sized messages
    corecore